Search results

Search for "aquatic animals" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

Suspension feeding in Copepoda (Crustacea) – a numerical model of setae acting in concert

  • Alexander E. Filippov,
  • Wencke Krings and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 603–615, doi:10.3762/bjnano.14.50

Graphical Abstract
  • field of filtration technologies. Keywords: adhesion; confocal laser scanning microscopy (CLSM); feeding efficiency; feeding structures; mechanical properties; Introduction Particle capture mechanisms are common in a huge variety of aquatic animals, such as polychaetes, bryozoans, bivalves, sponges
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2023

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
PDF
Album
Review
Published 05 Oct 2022

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • green is highly toxic for aquatic animals or mammals and can induce cancer in animals. Thus, MG is significantly detected at low concentrations in water. The maximum concentration of malachite green is less than 2 μg/kg (5.48 × 10−9 mol/L) for many national food safety standards. Pesticide residues in
PDF
Album
Full Research Paper
Published 13 Dec 2019

Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap traps

  • Simon Poppinga,
  • Tim Kampowski,
  • Amélie Metzger,
  • Olga Speck and
  • Thomas Speck

Beilstein J. Nanotechnol. 2016, 7, 664–674, doi:10.3762/bjnano.7.59

Graphical Abstract
  • seasonally inundated [10][11], can reportedly grow in a submersed state for months and is also capable of capturing aquatic animals, e.g., newts [12]. Detailed investigations regarding these potentially coincidental captures do not exist, and the question arises whether the traps function reliably under
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2016

Analysis of soil bacteria susceptibility to manufactured nanoparticles via data visualization

  • Rong Liu,
  • Yuan Ge,
  • Patricia A. Holden and
  • Yoram Cohen

Beilstein J. Nanotechnol. 2015, 6, 1635–1651, doi:10.3762/bjnano.6.166

Graphical Abstract
  • communities [18][19]; quantum dots (QDs) were linked to DNA damage of both freshwater mussels and gills [24]; and carbon nanotubes have been found to induce harmful effects to various organs (such as aquatic animals, bacteria, and plants) [25]. MNPs in soil can cause compositional changes to soil bacterial
PDF
Album
Full Research Paper
Published 28 Jul 2015

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • attachment mechanism of sessile aquatic animals and the aquatic realm presents many challenges to this mode of attachment. Viscous forces and the lack of surface tension under submerged conditions also affect frictional interactions in the aquatic environment. Moreover, the limitation of suction to the
  • attachment is due to a difference between the pressure under the suction cup and the ambient pressure. In some cases this pressure difference is not the only factor in total attachment, as in cephalopods with hook-lined sucker disks. Suckers are common in aquatic animals. In freshwater we can find true
PDF
Album
Review
Published 17 Dec 2014

Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

  • Bharat Bhushan

Beilstein J. Nanotechnol. 2011, 2, 66–84, doi:10.3762/bjnano.2.9

Graphical Abstract
  • behavior of oil droplets on various superoleophobic surfaces created in the lab. Keywords: aquatic animals; biomimetics; drag; lotus plants; shark skin; superhydrophobicity; superoleophobicity; Introduction Biologically inspired design, adaptation, or derivation from nature is referred to as ‘biomimetics
  • understanding of the functions provided by objects and processes found in nature can guide us to imitate and produce nanomaterials, nanodevices, and processes [2]. There are a large number of objects (bacteria, plants, land and aquatic animals, seashells etc.) with properties of commercial interest. Natural
  • well as the shark skin replica as an example from an aquatic animal. Article objective This article reviews drag data on artificial surfaces inspired from shark skin and lotus leaf. Oleophobic and self-cleaning surfaces inspired from aquatic animals are then discussed. Fabrication and Characterization
PDF
Album
Review
Published 01 Feb 2011
Other Beilstein-Institut Open Science Activities